1. Objective

Meta-analysis of preclinical animal studies is vital in evaluating the internal and external validity. This informs the design and conduct of future preclinical studies and translation to a clinical setting. Investigating causes of heterogeneity between studies and choosing appropriate methods for estimation and modeling is crucial to perform a meta-analysis. Assuming aggregate level data for a continuous primary outcome variable, we focus on two topics:

- Estimation of heterogeneity using three methods: method of moments (DerSimonian-Laird, DL), maximum likelihood (REML) and Bayesian approach (FB).
- Univariable versus multivariable meta regression for adjusting heterogeneity and exploring relative impact of multiple covariates on study level treatment effects.

2. Methodology

In random effects meta-analysis model, the treatment difference in studies is a random sample of independent observations.

\[\theta_i = \beta + b_i + \epsilon_i \]

where \(b_i \sim N(0, \tau^2) \) and \(\epsilon_i \sim N(0, \sigma^2) \) implying \(\theta_i \sim N(\theta, \sigma^2 + \tau^2) \).

Classical Estimation of Between Study Heterogeneity:

1. REML estimator: A maximum likelihood-based method, where estimates of \(\tau^2 \) and \(\theta \) are obtained through an iterative procedure.
2. DL estimator: A method of moments-based estimate, where \(\tau^2 \) can be derived by using the observed value of Q statistics and its expectation.

Frequentist Approach to Meta Regression:

Heterogeneity between studies can be explored based on study design and characteristics by meta regression with \(\alpha_i = \beta x_{2i} \) where \(x_{2i} \) is a covariate, \(b_i \sim N(0, \tau^2) \) and \(\epsilon_i \sim N(0, \sigma^2) \).

\[\theta_i = \beta_1 + \alpha_1 + b_i + \epsilon_i \]

Bayesian Approach to Meta-Analysis and Heterogeneity Estimation:

\(\theta_i \) are the estimates for effect size \(N(\theta, \sigma^2) \), where prior for \(\theta_i \) is \(N(\theta, \tau^2) \) with hyperpriors \(\theta \sim N(\theta, \sigma^2) \), \(\tau^2 \sim IG(\alpha, \lambda) \).

Bayesian Meta Regression:

Prior for \(\theta_i \) is \(N(\mu_1, \tau^2) \), where \(\mu_1 = \beta + \beta_2 x_{2i} \).

3. Motivating Dataset

- **To exemplify the suggested methodology for meta-analysis,** we reassess the study quality and design characteristics of systematic review data relating to the efficacy of Interleukin-1 Receptor Antagonist (IL-1RA) in animals exposed to focal cerebral ischaemia (modeling human with stroke).
- **The difference in the effects of IL-1RA compared to a control group exposed to vehicle or to no treatment in animal studies of focal cerebral ischaemia is the outcome of interest.** The primary endpoint was infarct volume.

4. Results

Table 1: (a) Summary of the selected univariate meta regression results using each study characteristic variables as a moderator to explain the extra heterogeneity present in infarct volume data, (b) Parameter estimates from multivariable meta regression model, where * represents significant effect of a moderator. (FB noninformative priors: \(\eta \sim N(0, 10^4) \), \(\tau^2 \sim 0.1 \), \(\sigma^2 \sim 0.01 \)) ran for 1000 iterations with 1000 burn-in periods.

5. Conclusions

- DL gives higher \(\tau^2 \) than REML and FB; it is negatively biased when there is high heterogeneity due to false assumption that within study variances are known akin to DL and REML.
- REML reduces bias by excluding the summary effect parameter in \(\tau^2 \) estimation but due to its iterative process, convergence is not guaranteed.
- Bayesian approach accounts for uncertainty in estimation and does not assume that within study variances are known akin to DL and REML.
- Multivariable meta-regression explains more heterogeneity between studies and leads to more generalisable results than simple random effects meta-analysis or univariate meta-regression.

6. Acknowledgements

This project is supported by IMI European Quality in Preclinical Data (EQIPD) under grant agreement No 773364 (https://quality-preclinical-data.eu/). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. This poster reflects only the authors’ views neither IMI JU nor EFPIA nor the European Commission are liable for any use of the information contained therein.