Collaboration patterns in science: gender and funding

Marta Sales-Pardo
Universitat Rovira i Virgili
Tarragona

marta.sales@urv.cat
@sees_lab
http://seeslab.info
“We like to bring together people from radically different fields and wait for the friction to produce heat, light and magic. Sometimes it takes a while.”
In recent decades, scientists have increasingly worked in teams and this practice has resulted in higher impact.

Wuchty, Jones & Uzzi Science 2007
However, not all teams are equally as good in terms of success

- **Scientific team composition in terms of member experience matters** - a mixture between newbies and repeating co-authors is best (Guimera et al Science 2005)
- **Diversity** (ethnicity, gender, background) in the composition of teams seems to be positively correlated with performance (Cooke & Hilton Eds., NAS 2015)
- Large teams might be at a disadvantage in terms of producing disruptive science (Yu, Wang and Evans Nature 2019)
Team Work
Working in teams has many caveats:

- Communication costs
- Language barrier in interdisciplinary teams
- Coordination costs in multi-institution collaborations
- ...
And yet, scientists want to engage in long distance collaborations

Multi-University Research Teams: Shifting Impact, Geography, and Stratification in Science

Benjamin F. Jones,1,2,* Stefan Wuchty,3† Brian Uzzi1,3,4‡

This paper demonstrates that teamwork in science increasingly spans university boundaries, a dramatic shift in knowledge production that generalizes across virtually all fields of science, engineering, and social science. Moreover, elite universities play a dominant role in this shift. By examining 4.2 million papers published over three decades, we found that

The Scientific Impact of Nations: Journal Placement and Citation Performance

Matthew J. Smith1,5,*, Cody Weinberger1, Emilio M. Bruna2,3, Stefano Allesina1,4,5

1 Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America; 2 Center for Latin American Studies, University of Florida, Gainesville, Florida, United States of America; 3 Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America; 4 Computation Institute, University of Chicago, Chicago, Illinois, United States of America; 5 Northern Plains Center for Human Potential, St. Paul, Minnesota, United States of America
And yet, scientists want to engage in long distance collaborations

Multi-University Research Teams: Shifting Impact, Geography, and Stratification in Science

Benjamin F. Jones, Stefan Wuchty, Brian Uzzi

This paper demonstrates that teamwork in science increasingly spans university boundaries, a dramatic shift in knowledge production that generalizes across virtually all fields of science, engineering, and social science. Moreover, elite universities play a dominant role in this shift. By examining 4.2 million papers published over three decades, we found that

The Scientific Impact of Nations: Journ Citation Performance

Matthew J. Smith, Cody Weinberger, Emilio M. Bruna, Stefano A.

Stanford, Sept 2019
Question: How do scientists collaborate?

- What factors affect with whom and how we collaborate? Do women collaborate more/less/differently than men?

- How do factors such as resources/funding affect our pattern of collaboration?
Gender differences: Do women engage in collaborations that are different from that of men?

Having women within a team is in principle beneficial because it increases team diversity. In fact, the presence of women in a team significantly increases its collective intelligence or the ability of a team to perform a task.

Evidence for a Collective Intelligence Factor in the Performance of Human Groups

Anita Williams Woolley,1* Christopher F. Chabris,2,3 Alex Pentland,3,4 Nada Hashmi,3,5 Thomas W. Malone3,5

Psychologists have repeatedly shown that a single statistical factor—often called “general intelligence”—emerges from the correlations among people’s performance on a wide variety of cognitive tasks. But no one has systematically examined whether a similar kind of “collective intelligence” exists for
Gender differences: Do women engage in collaborations that are different from that of men?

However in order to collaborate with women we need to have women in position of collaborating...
As, we know very few women survive the academic pipeline ('leaking effect')
As, we know very few women survive the academic pipeline ('leaking effect') so we will have to look at the collaboration patterns of just a few 'successful women'.

Stanford, Sept 2019
Leadership science tells us that there are 'slight but consistent' differences in the way men and women lead

(Eagly & Johnson 2001)

- Male leaders tend to be more autocratic, task oriented, agentic and transactional

- Female leaders tend to be more democratic, interpersonal, communal and transformational
Leadership science tells us that there are 'slight but consistent' differences in the way men and women lead (Eagly & Johnson 2001)

- Male leaders tend to be more autocratic, task oriented, agentic and transactional
- Female leaders tend to be more democratic, interpersonal, communal and transformational

Female leaders are more empowering and collaborative, so what does this tell us about how they collaborate?
We want to understand whether there are gender related differences in scientific practices and scientific production by discipline and career age.
We collected data from faculty rosters of US Universities (and it took us a long time)

FACULTY DIRECTORY

KEITH E.J. TYO

EDUCATION

Ph.D., M.S., MIT, Cambridge, MA
B.S., West Virginia University, Morgantown, WV
Haslam Presidential Fellow, MIT
NIH Kirschstein NRSA Fellow, Chalmers University of Technology
Searle Leadership Award

RESEARCH INTERESTS

Synthetic biology, metabolic engineering, global health

What we do
Microbes must cope with harsh, rapidly changing environments to survive. To do this, microbes have developed sophisticated mechanisms to (a) sense the changes in the environment, and (b) respond quickly to these changes to protect itself from harm or capitalize on an opportunity. Our lab seeks to rewire these fundamental input/output relationships to program cells to do useful things for mankind in a paradigm called synthetic biology. Inputs: We study methods to modify existing
We collected data from faculty rosters of US Universities (and it took us a long time)

<table>
<thead>
<tr>
<th>Discipline</th>
<th>Depts.</th>
<th>Faculty</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>31</td>
<td>98</td>
<td>567</td>
</tr>
<tr>
<td>Chemistry</td>
<td>35</td>
<td>198</td>
<td>1,020</td>
</tr>
<tr>
<td>Ecology</td>
<td>15</td>
<td>106</td>
<td>328</td>
</tr>
<tr>
<td>Materials Science</td>
<td>26</td>
<td>98</td>
<td>473</td>
</tr>
<tr>
<td>Molecular Biology</td>
<td>11</td>
<td>168</td>
<td>474</td>
</tr>
<tr>
<td>Psychology</td>
<td>10</td>
<td>171</td>
<td>279</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>839</td>
<td>3,141</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pbio.1002573.t001
Our data shows how the 'leaking effect' depends on the field.
Our data shows how the 'leaking effect' depends on the field

Stanford, Sept 2019

Plos ONE 2012
... and that there is no generalized increase in the fraction of female faculty in recent years.
How do resources or career risk affect scientific practices of females in academia?

Central to our mission is the pursuit of excellence in all our endeavors. This includes the advancement of women in science and engineering. It is essential that we create an environment where all members of our faculty, regardless of gender, are treated with respect and fairness. Therefore, I commend the study of Women Faculty in Science by the Faculty Senate. I encourage all our faculty members to read this report, reflect upon its messages and implications, and act upon them personally and collectively.

President Charles M. Vest

I learned two particularly important lessons from this report and related discussions while it was being crafted. First, I have always believed that contemporary gender discrimination within universities is part reality and part perception. True, but I now understand that reality is by far the greater part of the balance. Second, I, like most of my male colleagues, believe that we are highly supportive of our junior women faculty members. This also is true. They generally are content and well supported in many, though not all dimensions. However, I sat bolt upright in my chair when a senior woman, who has felt unfairly treated for some time, said "I also felt very positive when I was young."

We can take pride in the candor of dialog that these women have brought to this issue and in the progress that we have made, but much remains to be done. Our remarkably diverse student body must be matched by an equally diverse faculty. Through our institutional commitment and policies we must redouble our efforts to make this a reality.
How do resources and career risk affect females in academia?

President Charles M. Vest: I commend this study of Women Faculty in Science to all of my colleagues.

I learned two particularly important lessons from this report and from discussions while it was reality and part perception. True, but I now understand that reality is by far the greater part of faculty members. This also is true. They generally are content and well supported in many, if not all, of their professional activities, and for some time, said “I also felt very positive when I was young.”

We can take pride in the candor of the way these women have brought to this issue and its significance. In many respects, it is matched by an equally diverse faculty. Through our institutional commitment and policies we are making changes that will be significant and lasting.

Note: Institutions to the right of the red line pay men more than women at the specified rank.
Observation 1 (resources): Resources are not equally distributed, therefore, the gap in productivity is higher in fields requiring lots of resources
In fields requiring more resources female faculty are less productive
In fields requiring more resources female faculty are less productive
Going back to collaborations: what is the female collaborative signature?

Expectation: female leaders are more collaborative, empowering and interpersonal ... and therefore should be better at collaborating ...

but what does this entail in terms of measurable quantities?
Women have the same number of distinct collaborators than male counterparts..

... if we control for the number of publications

Stanford, Sept 2019

Plos Biology 2016
Women typically repeat less co-authors than men
If we control for career stage, then we do not observe sustained differences in team sizes except for early stages in chemistry and later stages in Molecular Biology.
Molecular biology: there is gender segregation by sub-field

Women tend to work in areas that involve smaller teams (and probably lower funding)
Molecular biology: the study case of genomics

This is the epitome of a male-dominated field:
- None of the researchers in our database in within the top 10 scientists in the field – taking into account that females are 26% of the field, this event is extremely unlikely (p ~0.0095).
- There seems to be a bias of male-lead labs in the hiring practices (Sheltzer and Smith PNAS 2014)
Women who succeed in academia have slightly different collaborative practices – they repeat less collaborators.

With respect to the sizes of teams in which female PIs participate, differences are more pronounced in fields in which funding/resources play an important role.
Funding affects the way we perform science

- Topics: Decides the growth of certain scientific areas and the ‘death’ of others

- It has an effect in how we specifically favor science by favoring specific practices (e.g. big center/consortia initiatives around certain topics)
Open Mike

Helping connect you with the NIH perspective, and helping connect us with yours.

Impact of Teams Receiving NIH Funding

Almost 11 years ago, Stefan Wachtuy, Benjamin Jones, and Brian Uzzi (all of Northwestern University) published an article in Science on “The Increasing Dominance of Team in Production of Knowledge.” They analyzed nearly 20 million papers published over 5 decades and 2.1 million patents and found that across all fields the number of authors per paper (or patent) steadily increased, that teams were coming to dominate individual efforts, and that teams produced more highly cited research.

In a Science review paper published a few weeks ago, Santo Fortunato and colleagues offered an overview of the “Science of Science.” One of their key messages was that “Research is shifting to teams, so engaging in collaboration is beneficial.”

I thought it would be worth exploring this concept further using NIH grants. For this post, data were acquired using a specific NIH portfolio analysis tool called Beuach. This platform provides easy access to carefully curated, extensively-linked datasets of global grants, patents, publications, clinical trials, and approved drugs.

One way of measuring papers is Figure 1 at supported papers the means. We can from NIH support (1 to 6).

Summarizing these findings:

- Consistent with prior literature, we see that NIH-funded extramural research, including research funded by R grants, produce mostly multi-author papers, with increasing numbers of authors per paper over time. These findings are consistent with the growing importance of team science.
- Mechanisms designed to promote larger-scale team science (mainly P and U grants) generate papers with greater numbers of authors.
- There is an association by which greater numbers of authors are associated with greater citation influence.

Figure 2 shows corresponding data for 765,851 papers that were supported only with research (R) grants. In other words, non-funded receiving support from program project (P), cooperative agreement (U), career development (K), training (T), or fellowship (F) awards. We see a similar pattern in which author counts have increased over time (mean from 4.0 to 6.2, median from 4 to 5). Also, of note is a drifting of the mean away from the median, reflecting an increasingly skewed distribution driven by a subset of papers with large numbers of authors.
Different schemes of funding are likely to affect the way we perform science

<table>
<thead>
<tr>
<th>EUROPE</th>
<th>US</th>
</tr>
</thead>
</table>
| Largest grants come from the EU: H2020, ERC
H2020: collaborative grants; groups participating from three different countries | Many options for reasonable grants: NIH, NSF, different departments, Foundations |

Labs are constituted by groups of researchers, often with some sort of hierarchical structure (e.g. around a full professor, research deputy)

Labs grow around a single PI
How do funding and existing scientific structures affect the way we collaborate (and perform good science)?
Expectation: Successful scientists within the same field affiliated within EU countries are more likely to collaborate and repeat collaborations.
The network of collaborations among top scientists within a field reveals that US and EU based scientists play distinctively different roles within a network.
The network of collaborations among top scientists within a field reveals that US and EU based scientists play distinctively different roles within a network.

Measured average fraction of same continent scientists in group
Specifically, EU top scientists within a group co-author more papers together than top US scientists in the same field do ...

$P(C_i)$

C_i, normalized connections within group with same continent scientists
Even though they have the same number of co-authors if we control by the number of publications.
Conclusions:

Top scientists have different patterns of collaboration depending on geographical location. This suggests that the current funding structures (and maybe overall scientific structures) play an important role in how scientists collaborate with their peers. Future: What kind of impact does this have on scientific output?
Acknowledgements

Northwestern University: Luís Amaral, Han Zhang, Theresa Woodruf
Indiana University: Filippo Radicchi
URV: Jordi Duch, Roger Guimerà, Lluís Danus
U. Toronto: Carles Muntaner
Scientific career and gender: What does it take to become a female academic in a STEM field?

First representation gap of women in science arises as early as Bachelor level and continues throughout the scientific career.